Skip to main content

Matrix

A matrix is a 2d table of number. It has a size called the dimension. An example of a matrix of dimension 3×33 \times 3: (123456789)\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}

You can add and multiply matrices together. Addition works like you'd think but not multiplication !

[a11a12a1na21a22a2nam1am2amn]×[b11b12b1pb21b22b2pbn1bn2bnp]=[c11c12c1pc21c22c2pcm1cm2cmp] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p}\\ b_{21} & b_{22} & \cdots & b_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p}\\ c_{21} & c_{22} & \cdots & c_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix}

With: cij=ai1b1j+ai2b2j++ain+bnj=k=1naikbkjc*{ij}= a*{i1} b*{1j} + a*{i2} b*{2j} +\cdots+ a*{in} + b*{nj} = \sum*{k=1}^n a*{ik}b*{kj} For all i,ji,j.

Matrix are a complex topic and this is not a full linear algebra course. The most important thing to understand is that matrices allow you to represent functions that act upon vectors in a "linear".